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Impedance and wake field in a superconducting beam pipe

Frank Zimmermann
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

~Received 27 June 1997; revised manuscript received 15 December 1997!

The impedance and the longitudinal wake field in a superconducting beam pipe are derived. At low fre-
quencies, this impedance is purely inductive, while at higher frequencies it approaches the resistive-wall
impedance of a normal conductor. For very short bunches, the resistive heating of the beam pipe can induce
quenches of the superconductor.@S1063-651X~98!12904-5#

PACS number~s!: 29.27.2a
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I. INTRODUCTION

Recent years have seen a rapid progress in supercon
ing rf and accelerator technology at many laborator
around the world@1–5#. More ambitious projects are bein
proposed@6,7#. Some of these projects consider operat
with very short bunches, in which case their performan
might be limited by short-range wake fields. In this repo
we calculate the short-range wake field and the impedanc
a superconducting beam pipe and, in particular, we study
question if and how this wake field differs from the resistiv
wall wake field in a conventional beam pipe. Based on
computed impedance, we then discuss under which circ
stances the resistive energy loss could induce a quench
a phase transition to the normal state.

This paper is structured as follows. In Secs. II and III w
present formulas for the impedance, the wake function,
the loss factor, which are derived from the BCS theory a
applicable for type-I superconductors. These formulas
volve integrals that must be evaluated numerically. In S
IV, we present approximate analytic expressions for
same set of quantities, considering the limiting cases of l
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and short bunches. Section V discusses the heating of
superconducting chamber wall due to resistive and geome
wake fields and the possibility of beam-induced quenches
Sec. VI, we consider a few parameter examples, includ
the ultracompression option of the TESLA x-ray FEL desi
@6#. Finally, we draw some conclusions in Sec. VII.

II. IMPEDANCE

At low frequencies, the complex resistivity of a perfe
superconductor is almost purely imaginary. As the freque
increases, the real part of the resistivity grows until, a
frequency comparable to the energy gap of the superc
ductor ~divided by \), it approaches the resistivity of th
normal state. In general, the complex conductivity,s5s1
1 is2, for arbitrary frequency and temperature can be o
tained from the BCS theory@8#: In the limit that the field
penetration depth is small compared with the supercond
ing coherence lengthj ~this is fulfilled for type-I supercon-
ductors!, the real and imaginary parts of the conductivity a
given by @9#
s1~v!5
2sn

\v E
e0

`

@ f ~E!2 f ~E1\v!#g~E!dE1
sn

\vEe02\v

2e0
@122 f ~E1\v!#g~E!dE, ~1!

s2~v!5
sn

\vEe02\v,2e0

e0 @122 f ~E1\v!#~E21e0
21\vE!

~e0
22E2!1/2@~E1\v!22e0

2#1/2
dE, ~2!
en-
where sn denotes the conductivity of the material in th
normal state,e0(T) is the energy gap of the superconduc
at temperatureT ~the energy required to break up a Coop
pair is 2e0'3.52kTc), f is the usual Fermi-Dirac function,

f ~E!5
1

eE/~kT!11
, ~3!

and
r
r

g~E!5
E21e0

21\vE

~E22e0
2!1/2@~E1\v!22e0

2#1/2
. ~4!

The second term of Eq.~1! only appears if\v.2e0, in
which case the lower limit of Eq.~2! is 2e0 and note0

2\v. The temperature dependence of the conductivity
ters via the Fermi-Dirac function,f (E), and also through the
7146 © 1998 The American Physical Society
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57 7147IMPEDANCE AND WAKE FIELD IN A . . .
temperature dependence of the energy gape0(T). For tem-
peratures smaller than half the critical temperature, the
ergy gap is almost constant:

e0~T!'e0~0! for T,Tc/2. ~5!

For simplicity we will henceforth ignore the weak temper
ture dependence ofe0, although it would be straightforward
to include. The complex conductivity, Eqs.~1! and ~2!, is
illustrated in Fig. 1 for niobium (e0'1.4 meV! at a tempera-
ture of 2 K.

At low temperatures and for sufficiently high frequencie
when the mean free path length of the metallic electr
becomes comparable to the classical skin depth, the sur
resistance can acquire a finite value that is larger than
value expected from the classical skin depth and the b
resistance. This phenomenon is called the ‘‘anomalous
effect’’ @10# and it is not included in our further derivation
As a consequence, the formulas derived in this report co
underestimate the actual wake field in cases where
anomalous skin effect is important. Also not included in th
paper is the ac component of the normal conductivity, of
parametrized by a complex conductivity of the forms̄
5sn /(12 ivt), with t the relaxation time of the meta
~typically t'10214 s!. The effect of the ac conductivity wa
investigated in Ref.@11#. It was found not to be very impor
tant, even for bunches as short as a few microns.

To compute the impedance of a superconducting be
pipe under the above assumptions and approximations
now consider a point chargeq moving froms52` to s5
1` at the speed of light in a round superconducting tube
radiusb. Introducing the relative longitudinal position var
able z52s1ct, with negative values ofz in front of the

FIG. 1. Complex conductivity, according to Eqs.~1! and~2!, for
niobium at a temperature of 2 K, as a function of the angular
quency. The vertical axis is normalized to the conductivity of t
normal state,sn . The horizontal coordinate is given in units o
inverse picoseconds. The dotted line in the left lower corner is
real part of the conductivity for a temperature of 5 K. The dash
lines represent the approximation of Eq.~16!.
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drive charge (s is the absolute longitudinal position,t the
time at which the bunch center arrives at locations, andc
the speed of light!, the longitudinal impedance per un
length,Z, is related to the electric field by a Fourier tran
form,

Z~v!52
1

qcE2`

`

dz Es~z!eivz/c, ~6!

where the angular frequencyv can adopt positive and nega
tive values.

The general form of the impedance can be obtained
solving Maxwell’s equations with proper matching of th
boundary conditions in the same way as for the conventio
resistive-wall impedance; see, e.g., Ref.@12#. The impedance
is

Z~v!5
2

cbF S lc

v
1

v

lcD S 11
i

2lbD2
ivb

2c G21

~7!

with

l25
4ps iv

c2
~8!

and where the root ofl that is in the upper complex hal
plane must be chosen.

We can drop the very-low frequency termi /(2lb) @the
term i /(2lb) is negligible, if f .c2/(16p2snb2)' 1 Hz#
and the high-frequency termv/(cl) @11,12# ~this term is
small at frequenciesf !2sn'1018–1019 Hz!, and approxi-
mate Eq.~7! by

Z~v!5
2

cbFlc

v
2

ivb

2c G21

. ~9!

Equation~9! can be solved numerically, using the defin
tion of l, Eq. ~8!, and the conductivity predicted by the BC
theory, given in Eqs.~1! and ~2!. As an example, Fig. 2
shows the impedance described by Eq.~9!, assuming a real-
istic energy gap of 2e0'0.15 \v0 and a temperature of 2
K. ~We will see in Sec. VI that this is a realistic value for
niobium pipe of 3 cm radius.! The difference between th
2-K and the 0-K conductivity is insignificant. Thus, all re
sults presented in the following apply for niobium at a
temperature between 0 and 2 K. However, we note that
K the real part of the low-frequency conductivity~shown by
a dotted line! becomes non-negligible.

In the treatment of resistive-wall wake fields, it is custom
ary @11# to introduce the characteristic distance

s0[S cb2

2psn
D 1/3

, ~10!

which depends on the beam-pipe radius and the conduct
~sometimes we also use the characteristic frequencyv0
[c/s0). In our case, it is natural to define a second distan
s̃g5c/ṽg , which is related to the critical temperature of th
superconductor byṽg'6kTc /\ @13#.

For typical beam-pipe radiib and pure superconductor
with a high normal conductivitysn , this second distance i
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7148 57FRANK ZIMMERMANN
always larger than the first one, i.e., in most situations i
s̃g.s0. Now, depending on the size of the bunch leng
relative tos0 and s̃g , three cases can be distinguished:sz

,s0, s̃g ~case I!, s0,sz, s̃g ~case II!, and s0, s̃g,sz
~case III!. In cases I and II, the bunch is shorter than t
distances̃g , and, thus, the power spectrum extends beyo
ṽg . In these two cases, quenches due to resistive losses
most likely to occur. For larger bunch lengths~case III!, the
impedance experienced by the beam is mainly inductive.
though in this latter case there is no net energy loss,
inductive wake field will give rise to an energy variatio
along the bunch, which might still affect the beam dynami

III. WAKE FIELD AND LOSS FACTOR

The electric field excited by a point chargeq ~also called
the wake function! is given by the inverse Fourier transfor
of the impedance,

Es~z!52
q

2pE2`

`

dv Z~v!e2 ivz/c

52
q

pE2`

`

dv ReZ~v!cos~vz/c!, ~11!

and the wake field for a real bunch distribution of to
chargeq is

FIG. 2. Longitudinal impedance, according to Eq.~9!, for a
niobium pipe (sn'331019 s21, Tc'9.5 K! with 3 cm radius at a
temperature of 2 K as afunction of the angular frequencyv. The

frequencyṽg is indicated by an arrow. The horizontal axis is no
malized tov0. The vertical axis gives the impedance in units
1/(b2v0), where v0 denotes the characteristic distan
@cb2/(2psn)#1/3 of Eq. ~10!. The dashed lines represent the a
proximations of Eq.~18!.
s
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l

Esb~z!5E
2`

z

dz8Es~z2z8!rz~z8!

52
q

2pE2`

`

dv Z~v! r̃z~v!e2 ivz/c ~12!

with rz denoting the normalized charge distribution andr̃z
its Fourier transform„for a Gaussian bunch of lengthsz it is
rz(z)5exp@2(z/sz)

2/2# and r̃z(v)5exp@2(vsz/c)2/2#….
The energy loss due to the wake field is given

DE/Ds5e2N2ktot , where e is the electron charge,N the
bunch population~so thatq5Ne), andktot the loss factor per
unit length, for a Gaussian bunch defined by

ktot5
1

pE0

`

dv ReZ~v!e2~vsz /c!2
. ~13!

If the superconducting beam pipe is part of a cavity t
resistive loss factor should be compared with the energy
due to the geometric wake field, which ultimately is al
converted into heat by the residual resistivity of the sup
conducting beam pipe. Consider a cylindrical cavity
lengthg, with a radiusa, placed in a beam pipe of radiusb.
If ub2au@(1/2p)Alg/2 andsz!b the loss factor per unit
length for a single cavity follows from a diffraction mode
@14#:

kgeom'
1

p
GS 1

4D1

b

1

Apgsz

. ~14!

For a periodic array of many cavities the impedance per c
ity is significantly smaller than the impedance of a sing
cavity at frequencies@15#

v<
Mgc

b2
, ~15!

whereM is the number of cavities. For the bunches we a
considering, the dominant contributions to the loss factor a
to the wake field come from much higher frequencies. C
sequently, in the following we ignore the interference b
tween different superconducting cavities.

IV. SIMPLIFIED EXPRESSIONS

In many cases, especially for very short and very lo
bunches, it is possible to bypass the complex express
based on the exact BCS theory and instead to use a m
simpler approximation, which often allows one to derive e
plicit expressions for the quantities of interest. In the lim
of very high and very low frequencies the complex condu
tivity of a superconductor is approximately given b
@9,13,16#

s~v!'H i 2snṽg /~pv! for v!ṽg

sn for v@ṽg ,
~16!

where the transition frequencyṽg , introduced earlier, is
roughly equal to 6kTc /\. Here,Tc is the critical temperature
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of the superconductor,k Boltzmann’s constant, and\
Planck’s constant. The energy\ṽg is approximately twice
the energy required to break up a Cooper pair.

Inserting Eq.~16! into Eq. ~8! gives

l5H iA8snṽg/c for v!ṽg

A2psnuvu@ i 1 sgn~v!#/c for v@ṽg .
~17!
f

th
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tiv
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i

If we now use the expressions of Eq.~17! for the parameter
l in Eq. ~9!, we find that at low frequencies, i.e., forv

!ṽg , the impedance is imaginary and the first term in th
square brackets dominates, while at high frequenciesv

@ṽg) the impedance equals the well-known resistive-w
impedance of a normal conductor@11#. Explicitly, in the two
limits of very high and very low frequency, the impedan
reads
Z~v!'5 2
i

b2v0
S Apv

Av0ṽg

D for v!ṽg

2

b2v0
F 2~12 i !1 i ~v/v0!3/2

4~v0 /v!1/222~v/v0!1~v/v0!5/2/2
G for v@ṽg .

~18!
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For a long bunch (sz@ s̃g), we can integrate the formula
for the wake field, Eq.~12!, using the inductive impedance o
Eq. ~18!, and obtain

Esb~z!5
qs0

3/2s̃g
1/2z

A2b2sz
3

expS 2
z2

2sz
2D . ~19!

Hence, the wake field of a long bunch is proportional to
derivative of the charge distribution. This is different fro
the wake field experienced by long bunches in a resis
pipe (sz.s0), for which Piwinski @17# has derived the ap
proximate expression

Erw~z!5
q

4b2S s0

sz
D 3/2

f ~z/sz! ~20!

with f (u)5uuu3/2e2u2/4(I 1/42I 23/47I 21/46I 3/4), where the
upper sign applies foru,0, the lower sign foru.0, and the
argument of the modified Bessel functionsI is u2/4. The
resistive wake field, Eq.~20!, is roughly proportional to the
charge distribution itself.

In the opposite limit of short bunches (sz,s0, sz, s̃g),
the superconducting wake field approaches the short-ra
resistive wake field of a normal conductor, which was cal
lated by Bane and Sands@11#. The energy loss in this limit is
well approximated by@11#

ktot'
2

b2
e23sz

2/s0
2

~sz,s0, sz,s0!. ~21!

This loss factor could be obtained from Eq.~13! by assuming
an impedance equal to that of an undamped oscillator w
resonant frequencyv r5A3 c/s0:

ReZ~v!'
2p

b2
@d~v1v r !1d~v2v r !# ~sz,s0, sz,s0!.

~22!
e

e

ge
-

th

V. WALL HEATING

The resistive-wall energy losses raise the temperatur
the beam pipe, which might result in quenches of the sup
conductor, i.e., in overheating and transition to the norm
state. We will estimate both the instantaneous heating of
beam-pipe surface during the passage of a single bunch
the quasistationary temperature increase for a long b
pulse consisting of many bunches.

First, let us consider the passage of a single bunch.
energy loss per unit length is

dE

ds
5ktote

2N25mec
2ktotr eN

2, ~23!

where N denotes the bunch population. We can write t
energy deposition per bunch and per unit beam-pipe are

Q̃[
dE

2pb ds
5

ktote
2N2

2pb
. ~24!

The loss factorktot can be obtained either by numerical
integrating Eq.~13!, or, in case of a short bunch, also b
using the approximate solution, Eq.~21!. For short bunches
~case I!, the quasi-instantaneous temperature rise is given

DT5
Q̃

cpr dp~v r !
, ~25!

wherecp denotes the specific heat,r the density, anddp(v r)
the penetration depth of the electromagnetic field at the
quencyv r5A3 v0, and where we have assumed the si
plified resonator impedance of Eq.~22!. Ignoring the possi-
bility of the anomalous skin effect, we takedp(v r) as equal
to the classical skin depth at the resonant frequencyv r :
dp(v r)'c/A2pv rs.

If we do not consider a smooth pipe but a cavity, we c
calculate the energy deposition due to the additional geom
ric wake fields by replacingktot in Eq. ~24! with the geomet-
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TABLE I. Some parameters for a niobium or copper beam pipe and two different beam-pipe radi~s.c.
stands for superconducting.!

Material Niobium~at 2–3 K! Copper~at room temp.!

Normal conductivitysn 331019 s21 5.831017 s21

Beam-pipe radiusb 3 cm 5 mm 3 cm 5 mm
Resistive lengths0 12 mm 3.4mm 29 mm 8.8mm

Superconducting lengths̃g
38 mm NA

Thermal conductivityk(T) 0.2 W cm21 K21 4.0 W cm21 K21

Densityr 8.6 g cm23 9.0 g cm23

Specific heatcp 1024 J g21 K21 ~s.c.! 0.39 J g21 K21
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ric loss factorkgeom of Eq. ~14!, which is valid if sz,b.
Assuming that the diffracted power is ultimately absorbed
the finite resistivity of the superconductor and that it is n
removed by higher-order mode dampers or by some o
means, Eq.~25! can be used, also in the case of geome
wake fields, to obtain a reasonable estimate for the indu
temperature rise.@In this case, we suggest to replace, in E
~25!, the skin depth at the resonant frequencyv r , dp(v r), by
the skin depth at the characteristic bunch frequen
dp(c/sz).#

Second, we can estimate the quasistationary tempera
rise for a long bunch train. We consider a train ofnb bunches
uniformly distributed over the pulse timetp . The average
power deposited per unit area of the beam pipe is

P5
nbQ̃

tp
. ~26!

If the train is long, a steady state with increased tempera
may be established during the train passage. We expect
to occur when the transverse spread of the heat wave a
end of the train,x(tp)'Ak(T) tp /cpr @wherek(T) is the
thermal conductivity at temperatureT#, is larger than the
thicknessd of the beam-pipe wall. The steady-state tempe
ture increase on the inside of the beam pipe is then

DT'
Pd

k~T!
, ~27!

whereP denotes the deposited power, Eq.~26!, and we have
assumed that the outer side of the beam pipe is held a
constant temperatureT.

VI. EXAMPLE

As an illustrative example, we consider a beam pipe m
from pure superconducting niobium. We assume a resid
resistivity ratio RRR@RRR is defined as the ratio of resistiv
ities at room temperature and at 10 K~just aboveTc) @6##
equal to 500@6#, so that the normal conductivity at 2 K is
aboutsn'331019 s21. Some further properties of niobium
are listed in Table I, which also gives the equivalent para
eters for room-temperature copper.

Figure 3 shows the longitudinal electric field, Eq.~11!,
that is generated by a point charge of chargeq in a niobium
pipe of radiusb53 cm. The solid line refers to supercon
ducting~s.c.!, the dash-dotted line to normal conducting ni
y
t
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c
ed
.

y,

re

re
his
he

-

he

e
al

-

bium. The difference between the two curves is very sm
suggesting that the superconductivity hardly affects the w
for short bunches. Also shown as a dotted line is the w
function for a normal conducting copper beam pipe at ro
temperature. The difference between copper and niobium
due to the 50 times higher normal conductivity of the pu
niobium~at low temperature! and not due to its superconduc
tivity.

Figure 4 displays the wake field for a Gaussian cha
distribution considering several ratiossz /s0. The electric
field on the vertical axis is scaled by (sz /s0)3/2. Inspection
of Eq. ~20! shows that, for a normal conductor, this scali
would result in a universal wake field shape in the limit
long-bunch lengths@11#. A drawback is that, by scaling in
this way, we are hiding the strong increase of the wake fi
with shorter bunch length. Figure 4 demonstrates that, in
case of short bunches with identicalsz /s0 ratios, the wake
fields for copper and niobium as well as those for superc

FIG. 3. Longitudinal wake fieldEzb
2/q left behind by a point

charge of chargeq in a beam pipe of radiusb, calculated according
to Eqs.~11!, ~9!, ~8!, ~2!, and ~1!, for a s.c. niobium tube at 2 K
~solid curve!; the wake field for a normal-conducting niobium pip
with otherwise identical parameters~dash-dotted!; and the short-
range resistive-wall wake field for a copper pipe at room tempe
ture~dotted!. The characteristic distancess0 for niobium and copper
are indicated by the vertical arrows.
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57 7151IMPEDANCE AND WAKE FIELD IN A . . .
ducting and normal-conducting niobium are very similar,
scaled according to Eq.~20!. Thus, indeed, for short bunche
there is no difference in the wake field between a normal
a superconducting beam pipe. However, as the bunch
longer and its rms length becomes comparable to the c
acteristic lengths̃g of the superconductor (sz> s̃g'38 mm
or sz /s0>4), the wake fields in the normal and superco
ducting cases start to differ markedly. In accordance w
expectation, both for a normal-conducting niobium pipe a
for a copper pipe the wake field of a long bunch,sz /s055,
is resistive and roughly proportional to the charge distrib
tion, whereas the superconducting wake is mainly induc

FIG. 4. Longitudinal wake fieldEzb
2/q of a Gaussian bunch o

chargeq in a beam pipe of radiusb for several values ofsz /s0,
according to Eqs.~12!, ~9! ~8!, ~1!, and ~2!; ~a! for a s.c. niobium
beam pipe at 2 K;~b! for a copper beam pipe at room temperatu
The dash-dotted curve in figure~a! shows, for comparison, the wak
field of a normal-conducting niobium beam pipe.
f

d
ts
r-

-
h
d

-
e

and approximately proportional to the derivative of the d
tribution.

Next, in Fig. 5, we show the loss factor for a Gaussi
bunch, obtained by numerically integrating Eq.~13!. The ap-
proximation Eq.~21!, describing the short-bunch limit, i
also depicted. Forsz,s0, it describes the exact loss facto
quite well.

The loss factor allows us to estimate the heat load on
vacuum-chamber wall and the resulting temperature rise.
us consider, as an example, the ultracompression option
posed for the x-ray laser facility at TESLA@6#. In this pro-
posal, the bunch train transported through the supercond
ing TESLA linac is 1 ms long (tp51 ms!, and containsnb
511 000 bunches, with a very short rms bunch length of
mm and a bunch population ofN563109. According to
Fig. 5, the loss factor in a smooth pipe for bunches of t
length isktot'0.05/b2. Takingb as equal to the iris radius in
the TESLA superconducting cavities~about 3 cm!, Eq. ~24!
yields the power deposited per unit area of the beam pipe
to the nonzero resistivity:Q̃'331026 J m22. Again as-
suming a niobium beam pipe at 2 K, with a skin depth
v r'431013 s21 of about 3 nm, Eq.~25! predicts a surface
temperature rise of up toDT'1 K. ~This is an overestimate
since the specific heat is not a constant but increases stro
with temperature.!

For a superconducting cavity, we can calculate the ene
deposition due to the geometric wake fields by inserting i
Eq. ~24! the loss factorkgeom of Eq. ~14!. This loss factor is
also depicted in Fig. 5, by the dash-dotted line. Using
length g equal to the TESLA cell period of 115.4 mm, th
power deposited per unit area of the chamber surface is
proximately Q̃geom'631024 J m22. Thus, the energy
deposition in the cavity is about 200 times larger than

.

FIG. 5. Loss factorb2ktot as a function of bunch lengthsz , for
a superconducting niobium beam pipe at 2 K. Solid lines: numer
integration of Eq.~13!; dashed line: short-bunch approximation, E
~21!; dotted line: loss factor for normal-conducting niobium; das
dotted line: geometric loss factor per unit length for a cavity
lengthg5 115.4 mm in a beam pipe of radiusb53 cm.
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7152 57FRANK ZIMMERMANN
energy deposition in a smooth pipe whose radius equals
cavity iris radius. For a skin depthdp of about 6 nm~evalu-
ated atv'c/sz) and assuming the entire radiated energy
rapidly absorbed by the finite resistivity of the superco
ductor ~here ‘‘rapidly’’ means on a time scale shorter th
the time for thermal relaxation over the distancedp), the
expected temperature rise according to Eq.~25! is enormous,
about 100 K.~This is clearly an overestimate, as stated b
fore.!

Whether a large temperature rise of a thin surface la
can cause a quench or whether, alternatively, the tempera
change only constitutes a short-lived fluctuation remains
be studied and will likely depend on details of the cooli
and vacuum system. However, the magnitude of the e
mated temperature rises indicates that the energy loss ca
by the geometric and resistive short-range wake fields co
be a potential limitation for some future applications.

Finally, let us estimate the steady-state temperature
over the entire bunch train. The average power deposi
per unit area, Eq.~26!, is 30 W m22 for a smooth pipe, and
6000 W m22 for a cavity. Assuming a thermal conductivit
of k(T)'0.3 W cm21 K21 and a wall thickness ofd50.5
mm @which is equal to the outward spreadx(tp) of the heat
wave after the 1-ms pulse time# the average temperature ris
Eq. ~27!, is aboutDT'1 mK for the smooth pipe, which
appears negligible, but as large as 0.3 K for the cavity, wh
would constitute a significant heat load. If the beam-p
radius is reduced to 1 cm, the temperature rise during
bunch-train passage would increase to 10 mK for the smo
pipe and to 1 K for the cavity.

VII. CONCLUSION

At low frequencies, the impedance of a superconduct
beam pipe is inductive, which leads to an approximately
ear energy variation along the bunch, but yields no net
ergy loss. At frequencies higher than the energy gap of
superconductor, the impedance becomes resistive and
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proaches the value of the normal state. As a result, the w
field for short bunches is nearly equal to that generated
normal conducting pipe at the same temperature. Even
since, for typical pure superconductors, the normal cond
tivity at low temperatures is very high, the wake fields a
smaller than they would be for a copper beam pipe at ro
temperature.

If operation with ultrashort bunches is planned, care h
to be taken to avoid quenches~i.e., transitions to the norma
state! caused by the resistive-wall energy loss. The estima
instantaneous temperature increase for a 25-mm-long bunch
passing through a beam pipe of 3 cm radius is one ce
grade, and it increases dramatically if also geometric w
fields must be absorbed. Details of the cryogenics design
decide if this sudden local temperature increase gives ris
a beam-induced quench or not. While the instantaneous h
ing from a short bunch can be large, the average tempera
increase during the passage of a multibunch train is unlik
to exceed a few mK for a smooth beam pipe. However, fo
cavity or an array of cavities, the average temperature
crease during a long beam pulse can approach a centig
unless the energy radiated at the geometric transitions is
sorbed by a special material or coupled out of the cavity

The wake field effects considered in this paper are lik
to impose a lower bound on the inner radius of superc
ducting beam pipes and rf structures in some future accel
tors, in particular those operating with very short bunche
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