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Impedance and wake field in a superconducting beam pipe
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The impedance and the longitudinal wake field in a superconducting beam pipe are derived. At low fre-
guencies, this impedance is purely inductive, while at higher frequencies it approaches the resistive-wall
impedance of a normal conductor. For very short bunches, the resistive heating of the beam pipe can induce
guenches of the superconduct®1063-651X98)12904-5

PACS numbds): 29.27-a

I. INTRODUCTION and short bunches. Section V discusses the heating of the
sHperconducting chamber wall due to resistive and geometric

Recent years have seen a rapid progress in superconduc\;vake fields and the possibility of beam-induced quenches. In

ing rf and accelerator technology at many IaboratoriesSeC_ VI, we consider a few parameter examples, including

around the world1-5]. More ambitious projects are being : . .
proposed[6,7]. Some of these projects consider operationthe ultracompression option of the TESLA x-ray FEL design

with very short bunches, in which case their performancéﬂ' Finally, we draw some conclusions in Sec. VIl.
might be limited by short-range wake fields. In this report,
we calculate the short-range wake field and the impedance in
a superconducting beam pipe and, in particular, we study the
question if and how this wake field differs from the resistive- At low frequencies, the complex resistivity of a perfect
wall wake field in a conventional beam pipe. Based on thesuperconductor is almost purely imaginary. As the frequency
computed impedance, we then discuss under which circunincreases, the real part of the resistivity grows until, at a
stances the resistive energy loss could induce a quench, i.&¢quency comparable to the energy gap of the supercon-
a phase transition to the normal state. ductor (divided by %), it approaches the resistivity of the
This paper is structured as follows. In Secs. Il and Ill wenormal state. In general, the complex conductivikys oy
present formulas for the impedance, the wake function, and-io», for arbitrary frequency and temperature can be ob-
the loss factor, which are derived from the BCS theory andained from the BCS theor{8]: In the limit that the field
applicable for type-l superconductors. These formulas inpenetration depth is small compared with the superconduct-
volve integrals that must be evaluated numerically. In Secing coherence lengt§ (this is fulfilled for type-I supercon-
IV, we present approximate analytic expressions for theductorg, the real and imaginary parts of the conductivity are
same set of quantities, considering the limiting cases of longiven by[9]

II. IMPEDANCE

200, [~ oy [~€
7i(w)= 7 “f [f(E)—f(E+hw)]g(E)dE+ﬁ—n ® [1-2f(E+hw)]g(E)dE, (1)
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|
where o, denotes _the conductivity of the material in the E2+E(2)+ﬁwE
normal stateey(T) is the energy gap of the superconductor g(E)= PN PRI (4)
at temperaturd (the energy required to break up a Cooper (B>~ €)1 (E+hw)®— ]
pair is 2eg~3.5XT,), f is the usual Fermi-Dirac function,
1 The second term of Eq.l) only appears ifiw>2¢, in
f(E)= eE/(KD 11’ (3 which case the lower limit of Eq(2) is — €y and noteg
—hw. The temperature dependence of the conductivity en-
and ters via the Fermi-Dirac functiori(E), and also through the
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drive charge ¢ is the absolute longitudinal positiom,the
time at which the bunch center arrives at locatsmrandc
the speed of light the longitudinal impedance per unit
length, Z, is related to the electric field by a Fourier trans-
form,

— 1(- iwz/c
2= dz E@E, ©

where the angular frequeney can adopt positive and nega-
tive values.

o The general form of the impedance can be obtained by
R R EEEEEEEEEELE eSS solving Maxwell’'s equations with proper matching of the
L boundary conditions in the same way as for the conventional
resistive-wall impedance; see, e.g., H&R]. The impedance

IS
___________ . 2|/[NC 1 i iwb] 1 7
___________________________________ = — _t — + — - ——
e (@) cbllw A\cC 2\b 2c 0
(10”s™) .
N ) with
FIG. 1. Complex conductivity, according to Eq%) and(2), for
niobium at a temperature of 2 K, as a function of the angular fre- ) Amoiw
quency. The vertical axis is normalized to the conductivity of the A= 2 8

normal state,,. The horizontal coordinate is given in units of

inverse picoseconds. The dotted line in the left lower corner is th i
- nd where the root ok that is in the upper complex half
real part of the conductivity for a temperature of 5 K. The dashec(iEi PP P

lines represent the approximation of Ed6) plane must be chosen.
P PP ' We can drop the very-low frequency terif{2\b) [the

term i/(2\b) is negligible, if f>c?/(16m?0,b%)~ 1 HZ]
r]a_md the high-frequency term/(cA) [11,12 (this term is
small at frequencie$<2o,~10®-10"° Hz), and approxi-
mate Eq.(7) by

temperature dependence of the energy gg(f). For tem-
peratures smaller than half the critical temperature, the e
ergy gap is almost constant:

Eo(T) ~ 60(0) forT< TC/Z (5)

-1

2|/\C iwb

For simplicity we will henceforth ignore the weak tempera- Z(w)= chl 2C
ture dependence af,, although it would be straightforward
to include. The complex conductivity, Eqél) and (2), is Equation(9) can be solved numerically, using the defini-
illustrated in Fig. 1 for niobium é,~1.4 me\j at a tempera- tion of \, Eq.(8), and the conductivity predicted by the BCS
ture of 2 K. theory, given in Egs(1) and (2). As an example, Fig. 2
At low temperatures and for sufficiently high frequencies,shows the impedance described by E), assuming a real-
when the mean free path length of the metallic electrongstic energy gap of ,~0.15 #iw, and a temperature of 2
becomes comparable to the classical skin depth, the surfade (We will see in Sec. VI that this is a realistic value for a
resistance can acquire a finite value that is larger than theiobium pipe of 3 cm radius.The difference between the
value expected from the classical skin depth and the bulk-K and the 0-K conductivity is insignificant. Thus, all re-
resistance. This phenomenon is called the “anomalous skifults presented in the following apply for niobium at any
effect” [10] and it is not included in our further derivations. temperature between 0 and 2 K. However, we note that at 5
As a consequence, the formulas derived in this report coulék the real part of the low-frequency conductivitghown by
underestimate the actual wake field in cases where tha dotted ling becomes non-negligible.
anomalous skin effect is important. Also not included in this  In the treatment of resistive-wall wake fields, it is custom-
paper is the ac component of the normal conductivity, ofterary [11] to introduce the characteristic distance

parametrized by a complex conductivity of the foren ch? |13
(2

©)

=o0,/(1-iw7), with 7 the relaxation time of the metal
(typically 7~10"*s). The effect of the ac conductivity was

investigated in Ref.L1]. It was found not to be very impor- which depends on the beam-pipe radius and the conductivity

tant, even for bunches as short as a few microns. i | the oh reristic f
To compute the impedance of a superconducting bean(§0me Imes we aiso use the characterstic lrequengy
=c/sp). In our case, it is natural to define a second distance,

pipe under the above assumptions and approximations, we

27oy, (10

now consider a point chargg moving froms= —« to s= sg=c/7qg, which is related to the critical temperature of the
+ o0 at the speed of light in a round superconducting tube ofsuperconductor b}l@%GkTC/h [13].
radiusb. Introducing the relative longitudinal position vari-  For typical beam-pipe radib and pure superconductors

able z= —s+ct, with negative values of in front of the  with a high normal conductivityr,, this second distance is
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; - Eal2)= | dzE(z-2)p2)

Zb%w,

== % f :de(w)Mw)e‘“ﬂ“ (12)

with p, denoting the normalized charge distribution and
its Fourier transform{for a Gaussian bunch of length, it is
p(2) =exd —(Z,)%2] and p,(w)=exd —(wo,/c)%2]).

The energy loss due to the wake field is given by
TN e _ AE/As=e?N%k,,;, wheree is the electron charge\ the
-1k Im Z bunch populatioriso thatg= Ne), andk,, the loss factor per
unit length, for a Gaussian bunch defined by

2 1 ©
2T Kiot="— f do ReZ(w)e (@o2/0?, (13
L mJo

=3 g b I_f t_he superconducting beam pipe is part of a cavity the
@/, resistive loss factor should be compared with the energy loss
due to the geometric wake field, which ultimately is also
FIG. 2. Longitudinal impedance, according to HE), for a  converted into heat by the residual resistivity of the super-
niobium pipe @,~3x 10" s ! T,~9.5 K) with 3 cm radius ata conducting beam pipe. Consider a cylindrical cavity of
temperature ©2 K as afunction of the angular frequenay. The lengthg, with a radiusa, placed in a beam pipe of radibis
frequencyﬂb is indicated by an arrow. The horizontal axis is nor- If |b—a|>(1/2m)\\g/2 ando,<b the loss factor per unit

malized tow,. The vertical axis gives the impedance in units of length for a single cavity follows from a diffraction model
1/(b?wy), where o, denotes the characteristic distance [14]:
[cb?/(2ma,)]*® of Eq. (10). The dashed lines represent the ap-

proximations of Eq(18). 1 /1\1 1
Kgeont —T ( Z) b Vrge. (14)

always larger than the first one, i.e., in most situations it is
~sg>so. Now, depending on the size of the bunch length For a periodic array of many cavities the impedance per cav-
relative tos, and’s,, three cases can be distinguished: ity is significantly smaller than the impedance of a single
<SO<~Sg (case ), So<(Tz<~Sg (case 1), and s, <~sg <o, cavity at frequenciefl5]
(case ). In cases | and Il, the bunch is shorter than the

distance~sg, and, thus, the power spectrum extends beyond o<
Z@. In these two cases, quenches due to resistive losses are

most likely to occur. For larger bunch lengttwase Il), the . .

mpedance experienced by the beam is mainly inductive. Al T TR TR B SRR, S O

though in this latter case there is no net energy loss, th o the Wak% field come from much higher frequencies. Con-

inductive wake field will give rise to an energy variation . . . 9 €q ;
sequently, in the following we ignore the interference be-

along the bunch, which might still affect the beam dynamw:s.tvween different superconducting cavities.

Mgc
b’

(15

Ill. WAKE FIELD AND LOSS FACTOR IV. SIMPLIFIED EXPRESSIONS

In many cases, especially for very short and very long
bunches, it is possible to bypass the complex expressions
based on the exact BCS theory and instead to use a much
simpler approximation, which often allows one to derive ex-
plicit expressions for the quantities of interest. In the limits
of very high and very low frequencies the complex conduc-

The electric field excited by a point charggalso called
the wake functiohis given by the inverse Fourier transform
of the impedance,

Es(z)z—if do Z(w)e '@Z° tivity of a superconductor is approximately given by
2m) e [9,13,16
q (-~ . ~ ~
=—— dw ReZ(w)cog wz/c), (11 i 20,4/ (Tw) for o<
T o(w)=~ " jb (16)
on for w>aqy,

and the wake field for a real bunch distribution of total where the transition frequenc}}@, introduced earlier, is
chargeq is roughly equal to &T./%. Here, T is the critical temperature
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of the superconductork Boltzmann's constant, and If we now use the expressions of Hd.7) for the parameter

Planck’s constant. The enerdy, is approximately twice A in Eq. (9), we find that at low frequencies, i.e., fos

the energy required to break up a Cooper pair. <ay, the impedance is imaginary and the first term in the
Inserting Eq.(16) into Eq. (8) gives square brackets dominates, while at high frequencies (

>7‘t;) the impedance equals the well-known resistive-wall

impedance of a normal conducidrl]. Explicitly, in the two

. f <"‘
A= I V8anay/c or w<~% (17) limits of very high and very low frequency, the impedance
V2mag|wl[i+ sgniw)]/c  for  w>aqy. reads

[ \/;w . _
- or w<
ool Vo "
Z(w)=~ (18

2 [ 2(1—1)+i(wl wg) 2 -

for w>%_
b2wo| 4(we/ @) 2—2( wl wg) + (@l wg) 322
|
For a long bunch ¢,>'s,), we can integrate the formula V. WALL HEATING

for the wake field, Eq(12), using the inductive impedance of

! The resistive-wall energy losses raise the temperature of
Eq. (18), and obtain

the beam pipe, which might result in quenches of the super-
371 5 conductor, i.e., in overheating and transition to the normal

1%’ 2 _ 19 state. We will estimate both the instantaneous heating of the
\/Ebzaﬁ ex 203 ' (19 beam-pipe surface during the passage of a single bunch and

the quasistationary temperature increase for a long beam
Hence, the wake field of a long bunch is proportional to thePulse consisting of many bunches.
derivative of the charge distribution. This is different from  First, let us consider the passage of a single bunch. The
the wake field experienced by long bunches in a resistiv€nergy loss per unit length is
pipe (o,>sp), for which Piwinski[17] has derived the ap-
proximate expression dE

E = ktotezsz meCZktotl’eNz, (23)

Esb(z):

q So 3/2
Ew(2)= 4_b2<;) f(zloy) (200 whereN denotes the bunch population. We can write the
z energy deposition per bunch and per unit beam-pipe area as

with f(U):|U|3/2‘3_u2/4(|1/4—|—3/4I|—1/4i|3/4), where the -  dE  k€?N?
upper sign applies far<<0, the lower sign fou>0, and the e t; .
argument of the modified Bessel functiohss u?/4. The moads m

resistive wake field, Eq.20), is roughly proportional to the ) ) )
charge distribution itsecﬁ. ) gnty prop The loss factork,,; can be obtained either by numerically

o ~ integrating Eq.(13), or, in case of a short bunch, also by
In the opposite limit of short bunchesr{<sy, o< ), using the approximate solution, E@Q1). For short bunches

the_ Sl_Jpercondu_ctlng wake field approaches _the short-ran%ase }, the quasi-instantaneous temperature rise is given by
resistive wake field of a normal conductor, which was calcu-

lated by Bane and Sanfi1]. The energy loss in this limit is ~

(24)

well approximated by11] AT= Q (25)
Cpp 5p(wr) '
2 2,2
Ko™ gefsozlso (0,<Sp, 0,<Sp). (21)  wherec, denotes the specific heatthe density, and,(w,)

the penetration depth of the electromagnetic field at the fre-

quencyw, =3 wy, and where we have assumed the sim-

ﬁ)lified resonator impedance of E(2). Ignoring the possi-

bility of the anomalous skin effect, we takg(w,) as equal

to the classical skin depth at the resonant frequesgy

o Op(w;)~cl\27w 0. ' . .

REZ(w)~ —[ 8w+ )+ 8(w—w,)] (0,<So, 7,<Sp). If we do not consider a smooth pipe but a cavity, we can
b? calculate the energy deposition due to the additional geomet-

(22 ric wake fields by replacingy in Eq. (24) with the geomet-

This loss factor could be obtained from Ef3) by assuming
an impedance equal to that of an undamped oscillator wit
resonant frequency, = 3 c/sy:
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TABLE |. Some parameters for a niobium or copper beam pipe and two different beam-pipdsadii.
stands for superconducting.

Material Niobium(at 2-3 K Copper(at room temp.
Normal conductivityo, 3x10"% st 5.8x10"7 s?
Beam-pipe radiu® 3cm 5 mm 3cm 5 mm
Resistive lengtts, 12 um 3.4um 29 um 8.8 um
Superconducting length, 38 um NA
Thermal conductivityk(T) 02WemtK™? 40WemtK!
Density p 8.6 gcm? 9.0gcm?
Specific heat, 104 JgtK™!(s.0) 039Jgtk?

ric loss factorkgeom of Eq. (14), which is valid if o,<b. bium. The difference between the two curves is very small,
Assuming that the diffracted power is ultimately absorbed bysuggesting that the superconductivity hardly affects the wake
the finite resistivity of the superconductor and that it is notfor short bunches. Also shown as a dotted line is the wake
removed by higher-order mode dampers or by some othéftinction for a normal conducting copper beam pipe at room
means, Eq(25) can be used, also in the case of geometridemperature. The difference between copper and niobium is
wake fields, to obtain a reasonable estimate for the inducedue to the 50 times higher normal conductivity of the pure
temperature risdlIn this case, we suggest to replace, in Eq.niobium (at low temperatuneand not due to its superconduc-
(25), the skin depth at the resonant frequengy Sp(w,), by  tivity. _ _ _
the skin depth at the characteristic bunch frequency, Figure 4 displays the wake field for a Gaussian charge
dp(clay).] distribution considering several ratias,/s,. The electric
Second, we can estimate the quasistationary temperatufigld on the vertical axis is scaled byr{/so)*2 Inspection
rise for a long bunch train. We consider a traimgfounches ~ of Eq. (20) shows that, for a normal conductor, this scaling
uniformly distributed over the pulse timg . The average Wwould result in a universal wake field shape in the limit of

power deposited per unit area of the beam pipe is long-bunch length$11]. A drawback is that, by scaling in
this way, we are hiding the strong increase of the wake field
npQ with shorter bunch length. Figure 4 demonstrates that, in the

P= - (26) case of short bunches with identica} /s, ratios, the wake
P fields for copper and niobium as well as those for supercon-

If the train is long, a steady state with increased temperature_
may be established during the train passage. We expect thi;
to occur when the transverse spread of the heat wave at thw/ 1 s.C.
end of the trainx(t,)~ Vk(T) tp/cop [Wherek(T) is the . /\% nc.
thermal conductivity at temperaturE], is larger than the r T
thicknesdd of the beam-pipe wall. The steady-state tempera- T R T

So.np So,cu

Nb pipe at O K

ture increase on the inside of the beam pipe is then

Pd
(27)

ATWW, =

whereP denotes the deposited power, E26), and we have Cu pipe at room temperature

assumed that the outer side of the beam pipe is held at th
constant temperaturg.

VI. EXAMPLE
_5 —
As an illustrative example, we consider a beam pipe made b=3cm
from pure superconducting niobium. We assume a residua N T T
o 20 40 60 80 100 120

resistivity ratio RRRIRRR is defined as the ratio of resistiv-
ities at room temperature and at 10(Kist aboveT,) [6]] z (um)
equal to 500(6], so that the normal conductivitt @ K is FIG. 3. Longitudinal wake fielcE b%/q left behind by a point
abou_ton~.3>< 10 s7%, Some further propertle_s of niobium charge of chargg in a beam pipe of radius, calculated according
are listed in Table I, which also gives the equivalent paramy, gqs (11), (9), (8), (2), and (1), for a s.c. niobium tube at 2 K
eters for room-temperature copper. o (solid curve; the wake field for a normal-conducting niobium pipe
Figure 3 shows the longitudinal electric field, E4.1),  with otherwise identical parametetdash-dottej and the short-
that is generated by a point charge of chagge a niobium  range resistive-wall wake field for a copper pipe at room tempera-
pipe of radiusb=3 cm. The solid line refers to supercon- ture(dotted. The characteristic distancegfor niobium and copper
ducting(s.c), the dash-dotted line to normal conducting nio- are indicated by the vertical arrows.
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FIG. 5. Loss factob?k, as a function of bunch lengitn,, for
Copper b a superconducting niobium beam pipe at 2 K. Solid lines: numerical

(b) integration of Eq(13); dashed line: short-bunch approximation, Eq.
(21); dotted line: loss factor for normal-conducting niobium; dash-
dotted line: geometric loss factor per unit length for a cavity of
lengthg= 115.4 mm in a beam pipe of radibbs=3 cm.
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o
12
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o
IS
T

and approximately proportional to the derivative of the dis-
[ tribution.

o Next, in Fig. 5, we show the loss factor for a Gaussian
T bunch, obtained by numerically integrating Efj3). The ap-

proximation Eq.(21), describing the short-bunch limit, is
also depicted. Forr,<s,, it describes the exact loss factor
0:/%,=0.2 quite well.
0./56=5 The loss factor allows us to estimate the heat load on the
0./50=1 vacuum-chamber wall and the resulting temperature rise. Let
us consider, as an example, the ultracompression option pro-
i posed for the x-ray laser facility at TESL{]. In this pro-
g bl b o s e L L posal, the bunch train transported through the superconduct-
2/, ing TESLA linac is 1 ms longti,=1 ms, and contains,
=11 000 bunches, with a very short rms bunch length of 25
FIG. 4. Longitudinal wake fieldE,b?/q of a Gaussian bunch of um and a bunch population dfi=6X 10°. According to
chargeq in a beam pipe of radiub for several values ofr,/sy,  Fig. 5, the loss factor in a smooth pipe for bunches of this
according to Eqgs(12), (9) (8), (1), and(2); (a) for a s.c. niobium  |ength isk,~0.05b%. Takingb as equal to the iris radius in
beam pipe at 2 K(b) for.a copper beam pipe at room temperature. the TESLA superconducting caviti€éabout 3 cny, Eq. (24)
The dash-dotted curve in figut@) shows, for comparison, the wake yields the power deposited per unit area of the beam pipe due

field of a normal-conducting niobium beam pipe. to the nonzero resistivity@~3><10_6 Jnr2. Again as-
suming a niobium beam pipe at 2 K, with a skin depth at
ducting and normal-conducting niobium are very similar, if » ~4x 10" s of about 3 nm, Eq(25) predicts a surface
scaled according to E¢20). Thus, indeed, for short bunches temperature rise of up tAT~1 K. (This is an overestimate,
there is no difference in the wake field between a normal andince the specific heat is not a constant but increases strongly
a superconducting beam pipe. However, as the bunch getgith temperature.
longer and its rms length becomes comparable to the char- For a superconducting cavity, we can calculate the energy
acteristic |ength”gg of the superconductom(zgggmgg um  deposition due to the geometric wake fields by inserting into
or o,/sy=4), the wake fields in the normal and supercon-Ed. (24) the loss factokge,m Of Eq. (14). This loss factor is
ducting cases start to differ markedly. In accordance withelso depicted in Fig. 5, by the dash-dotted line. Using a
expectation, both for a normal-conducting niobium pipe andengthg equal to the TESLA cell period of 115.4 mm, the
for a copper pipe the wake field of a long bunefy/s,=5, Power deposited per unit area of the chamber surface is ap-
is resistive and roughly proportional to the charge distribuproximately Qgeom~6>< 1074 Jm 2. Thus, the energy
tion, whereas the superconducting wake is mainly inductiveleposition in the cavity is about 200 times larger than the

-0.4 |-

-06 |
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energy deposition in a smooth pipe whose radius equals thgroaches the value of the normal state. As a result, the wake
cavity iris radius. For a skin depth, of about 6 nm(evalu- field for short bunches is nearly equal to that generated in a
ated atw~c/o,) and assuming the entire radiated energy isnormal conducting pipe at the same temperature. Even so,
rapidly absorbed by the finite resistivity of the supercon-since, for typical pure superconductors, the normal conduc-
ductor (here “rapidly” means on a time scale shorter thantivity at low temperatures is very high, the wake fields are
the time for thermal relaxation over the distang), the  smaller than they would be for a copper beam pipe at room
expected temperature rise according to 8) is enormous, temperature.
about 100 K.(This is clearly an overestimate, as stated be- If operation with ultrashort bunches is planned, care has
fore) to be taken to avoid quenchés., transitions to the normal
Whether a large temperature rise of a thin surface layestatg caused by the resistive-wall energy loss. The estimated
can cause a quench or whether, alternatively, the temperatuigstantaneous temperature increase for axB%long bunch
change only constitutes a short-lived fluctuation remains tgassing through a beam pipe of 3 cm radius is one centi-
be studied and will likely depend on details of the coolinggrade, and it increases dramatically if also geometric wake
and vacuum system. However, the magnitude of the estifields must be absorbed. Details of the cryogenics design will
mated temperature rises indicates that the energy loss causaecide if this sudden local temperature increase gives rise to
by the geometric and resistive short-range wake fields could beam-induced quench or not. While the instantaneous heat-
be a potential limitation for some future applications. ing from a short bunch can be large, the average temperature
Finally, let us estimate the steady-state temperature ris@crease during the passage of a multibunch train is unlikely
over the entire bunch train. The average power depositioto exceed a few mK for a smooth beam pipe. However, for a
per unit area, Eq(26), is 30 W m2 for a smooth pipe, and cavity or an array of cavities, the average temperature in-
6000 W m™? for a cavity. Assuming a thermal conductivity crease during a long beam pulse can approach a centigrade,
of k(T)=~0.3 Wem* K™! and a wall thickness ai=0.5  unless the energy radiated at the geometric transitions is ab-
mm [which is equal to the outward spreak,) of the heat sorbed by a special material or coupled out of the cavity.
wave after the 1-ms pulse timhthe average temperature rise,  The wake field effects considered in this paper are likely
Eq. (27), is aboutAT~1 mK for the smooth pipe, which to impose a lower bound on the inner radius of supercon-
appears negligible, but as large as 0.3 K for the cavity, whictglucting beam pipes and rf structures in some future accelera-
would constitute a significant heat load. If the beam-pipetors, in particular those operating with very short bunches.
radius is reduced to 1 cm, the temperature rise during the
bunch-train passage would increase to 10 mK for the smooth ACKNOWLEDGMENTS

pipe and ¢ 1 K for the cavity. )
| am very grateful to Rainer Wanzenberg from DESY,

who first mentioned to me the possibility that the field of
very short bunches can break up Cooper pairs, thus stimulat-

At low frequencies, the impedance of a superconductingng my interest in this problem, and who also pointed me to
beam pipe is inductive, which leads to an approximately lin-Ref.[16]. | also want to thank Karl Bane and David Whittum
ear energy variation along the bunch, but yields no net enfor various helpful discussions. This work was supported by
ergy loss. At frequencies higher than the energy gap of théhe U.S. Department of Energy under Contract No. DE-
superconductor, the impedance becomes resistive and apC03-76SF00515.

VII. CONCLUSION

[1] R. Sundeliret al,, IEEE Trans. Nucl. Sci30, 3336(1983. [10] G. Reuter and E. Sondheimer, Proc. R. Soc. London, Ser. A
[2] B. Dwersteget al, IEEE Trans. Nucl. Sci32, 3596(1985. 195, 336(1949.
[3] K. Kubo et al, Proceedings of HEACCYgnt. J. Mod. Phys.  [11] K. Bane and M. SandS;he Short-Range Resistive Wall Wake

A 2, 691(1992]. Fields, Proceedings of the Micro Bunches Workshop, Upton,
[4] C. Reeceet al, Proceedings of HEACC9nt. J. Mod. Phys. New York, AIP Conf. Proc. No. 36TAIP, New York, 1993,

p. 131.

A 2, 951(1992]. [12] A. Chao,Physics of Collective Beam Instabilities in High En-
[5] G. GeSChonkdfor the SL RF Group Part. Accel.54, 15 ergy Acce|erat0r$\]ohn W||ey & Sons, New York, 1993

(1996. [13] M. Tinkham, SuperconductivityGordon and Breach, New
[6] R. Brinkmannet al,, Report No. DESY 97-0481997). York, 1st edition 1965, and 2nd edition 1996

[7] R. Corsini and A. Hofmann, CERN Report No. CERN-SL-96- [14] Referencd12], Equation(2.142.
[15] S. A. Heifets and S. A. Kheifets, Rev. Mod. Phy&3, 631

07-AP (1996. (1991
[8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. R@8. [16] D. M. Ginsberg and M. Tinkham, Phys. Rei18 990
1175(1957. (1960.

[9] D. C. Mattis and J. Bardeen, Phys. RéL1, 412(1958. [17] A. Piwinski, DESY Report No. 72/721972.



